Sophomore-dream

在看到之前你会以为这是啥 = =?

wiki 在 这里

其实就是一个公式罢了。刚刚才发现的,实在是太漂亮了:

011xxdx=n=11nn\int*0^1 \frac{1}{x^x} \mathrm{d} x = \sum*{n=1} \frac{1}{n^n}

从一个积分到一个求和,连续到离散,真是不错。

证明的话, wiki 上有吧,摘抄如下。

首先变形: xx=exlogxx^{-x} = e^{-x \log x} 。展开有:

xx=_n=0(xlogx)nn!x^{-x} =\sum\_{n=0} \frac{(-x \log x)^n}{n!}

代入并提前 \sum

011xxdx=01n=0(xlogx)nn!dx=_n=01n!01(xlogx)ndx\int*0^1 \frac{1}{x^x} \mathrm{d} x = \int_0^1 \sum*{n=0} \frac{(-x \log x)^n}{n!} \mathrm{d} x = \sum\_{n=0} \frac{1}{n!} \int_0^1 (-x \log x)^n \mathrm{d}x

换元,令 x=etn+1,dx=etn+1n+1dtx = e^{-\frac{t}{n+1}}, \mathrm{d} x = -\frac{e^{-\frac{t}{n+1}}}{n+1}\mathrm{d}t0<t<0 < t < \infty

01(xlogx)ndx=0(etn+1tn+1)netn+1n+1dt=1(n+1)n+10ettndt=n!(n+1)n+1\begin{array}{rcl} \int*0^1 (-x \log x)^n \mathrm{d}x & = & \int_0^\infty(e^{-\frac{t}{n+1}} \frac{t}{n+1})^n \frac{-e^{-\frac{t}{n+1}}}{n+1}\mathrm{d}t \\ & = & \frac{1}{(n+1)^{n+1}} \int*\infty^0 -e^{-t} t^n \mathrm{d} t \\ & = & \frac{n!}{(n+1)^{n+1}} \\ \end{array}

再次代入:

011xxdx=n=01n!01(xlogx)ndx=n=01n!n!(n+1)n+1=_n=11nn\begin{array}{rcl} \int*0^1 \frac{1}{x^x} \mathrm{d} x & = & \sum*{n=0} \frac{1}{n!} \int*0^1 (-x \log x)^n \mathrm{d}x \\ & = & \sum*{n=0} \frac{1}{n!} \frac{n!}{(n+1)^{n+1}} \\ & = & \sum\_{n=1} \frac{1}{n^n} \\ \end{array}